Stat 201: Introduction to Statistics

Standard 18: Probability Distributions
 - Discrete Distributions

Random Variable

- Random Variable - a numerical measurement of the outcome of a random phenomena
- Capital letters refer to the random variable
- Lower case letters refer to specific realizations
- Recall our definitions of Discrete and Continuous quantitative variables from before

Random Variable

- Discrete Example: Number of goals in an EPL soccer match
- We refer to the number of goals in an EPL soccer match as X, until we have a concrete observation
$-x=2$ goals is a realization - a concrete observation

Random Variable

- Continuous Example: Height of Americans
- We refer to the Height of Americans as X, until we have a concrete observation
$-x=72$ inches is a realization - a concrete observation

Discrete Distributions!

- Probability Distribution - a summary of all possible outcomes of a random phenomena along with their probabilities
- Example 1: Number of goals scored in an EPL game
- Example 2\&3: Number of red lights on your way to work
- Example 4: Number of free throws made

Random Variable: Discrete

- The possible outcomes must be countable
- Remember quantitative discrete variables from chapter 2? If not, you should look back!
- We have a valid discrete probability distribution if

1. Our outcomes are discrete (countable)
2. All the probabilities are valid

- $0 \leq P(x) \leq 1$ for all outcomes x

3. We've accounted for all possible outcomes

- $\sum P(x)=1$

Example 1: Discrete Distributions

- Example: number of goals scored in an EPL soccer match
- The number of goals is countable
- All probabilities are between 0 and 1
- $\sum P(x)=.0711+.1974+$ $.2158+.1842+.1658+$ $.1026+.0447+.0105+$ $.0026+.0053=1$

$\mathrm{X}=$ \# of Goals	$\mathrm{P}(\mathrm{x})=$ Probability
0	.0711
1	.1974
2	.2158
3	.1842
4	.1658
5	.1026
6	.0447
7	.0105
8	.0026
9	.0053
TOTAL	1

Example 2: Discrete Distribution

- Example: Number of red lights on the way to work (there are only three red lights on your way to work this means you can catch 0,1,2 or 3 lights on your way to work.)

$X=$ Number of lights	$P(x)=$ Probability
0	.10
1	.10
2	.10
3	.40

- The number of red lights is countable
- All probabilities are between 0 and 1
- $\sum P(x)=.10+.10+.10+.40=.70$
- Since $\sum P(x)=.70 \neq 1$ we do not have a valid Discrete Dist.

Example 3 Discrete Distributions Route 2

- Example: Number of red lights on the way to work (there are only three red lights on your way to work - this means you can catch $0,1,2$ or 3 lights on your way to work.)

$X=$ Number of lights	$P(x)=$ Probability
0	.40
1	.30
2	.20
3	.10

- The number of red lights is countable
- All probabilities are between 0 and 1
- $\sum P(x)=.40+.30+.20+.10=1$

Example 3 Discrete Distributions

 Route 2- Example: Number of red lights on the way to work (there are only three red lights on your way to work - this means you can catch $0,1,2$ or 3 lights on your way to work.)

$X=$ Number of lights	$P(x)=$ Probability
0	.20
1	.30
2	.10
3	.40

- The number of red lights is countable
- All probabilities are between 0 and 1
- $\sum P(x)=.20+.30+.10+.40=1$

Example 4: Discrete Distribution

- Example: Number of free throws made by a basketball player in 2 tries

$X=$ Number Made	$P(x)=$ Probability
0	.40
1	.40
2	.20

- The number of free throws is countable
- All probabilities are between 0 and 1
- $\sum P(x)=.40+.40+.20=1$

The Mean of a Discrete Distribution

- The mean of a probability distribution represents the average of a large number of observed values. [Remember: in the long run]
- We denote this with the Greek letter as below
- $\mu_{x}=E(X)=$ Expected value of $x=\sum x P(x)$

Example 1: Discrete Distributions

- Example: \# of goals scored in an EPL soccer match
- $\mu_{x}=E(x)=$
$\sum x * P(x)=0+.1974+.4316+$

$\mathrm{X}=$ \# of Goals	$\mathrm{P}(\mathrm{X})$	$\mathrm{X}^{*} \mathrm{P}(\mathrm{X})$
0	.0711	$0^{*} .0711=0$
1	.1974	$1^{*} .1974=.1974$
2	.2158	$2^{*} .2158=.4316$
3	.1842	$3^{*} .1842=.5526$
4	.1658	$4^{*} .1658=.6632$
5	.1026	$5^{*} .1026=.5130$
6	.0447	$6^{*} .0447=.2682$
7	.0105	$7^{*} .0105=.0735$
8	.0026	$8^{*} .0026=.0208$
9	.0053	$9^{*} .0053=.0477$
TOTAL	1	2.768

Example 1: Discrete Distributions

- Example: \# of goals scored in an EPL soccer match
- $\mu_{x}=E(x)=$ $\sum x * P(x)=0+.1974+.4316+.5526+$ $.6632+.5130+.2682+.0735+.0208+$ $.0477=2.768$
- We like to write the interpretation in reasonable terms
- "On average, we expect between two and three goals in an EPL soccer match"

Example 2 Discrete Distributions Comparing Routes: Route 1

$\mathrm{X}=$ Number of lights	$\mathrm{P}(\mathrm{X})$	$\mathrm{X}^{*} \mathrm{P}(\mathrm{X})$
0	.40	$0^{*} .40=0$
1	.30	$1^{*} .30=.30$
2	.20	$2^{*} .20=.40$
3	.10	$3^{*} .10=.30$

- $E(X)=\sum x P(x)=0+.3+.4+.3=1$
- "On average, we expect that Route 1 will result in hitting one red light"

Example 3 Discrete Distributions Comparing Routes: Route 2

$X=$ Number of lights	$P(X)$	$X^{*} P(X)$
0	.20	$0^{*} .20=0$
1	.30	$1^{*} .30=.30$
2	.10	$2^{*} .10=.20$
3	.40	$3^{*} .40=1.20$

- $E(X)=\sum x P(x)=0+.30+.20+1.20=1.7$
- "On average, we expect that Route 2 will result in hitting between one and two red lights"

Example 2\&3 Discrete Distributions Comparing Routes

- Route 1
$-E(X)=\sum x P(x)=1$
- Route 2
$-E(X)=\sum x P(x)=1.7$
- Route 2 will result in more lights on average

Example 4: Discrete Distribution

- Example: Number of free throws made by a basketball player in 2 tries

$X=$ Number Made	$P(x)=$ Probability	$x^{*} P(x)$
0	.40	$0^{*} .40=0$
1	.40	$1^{*} .40=.40$
2	.20	$2^{*} .20=.40$

- $\mu_{x}=E(x)$
$=\sum x * P(x)=0+.40+.40=.80$
- "On average, we expect between zero and one free throw in two tries"

Why don't I get this?

- Probabilities and expected values are much different than what we did in Chapter 2 where you found the sample mean by adding up values and dividing.
- Expected value in the sense of the discrete distribution is what we would expect to see on average if we completed the random experiment infinitely many times
- i.e. if I took the same route to work every day for the rest of time how many lights would I expect to see on average over all of those trips.

Discrete Distributions on YouTube

- Introduction
- https://www.youtube.com/watch?v=mrCxwEZ 22o
- Mean and standard deviation of a Discrete Distribution on your TI calculator
- https://www.youtube.com/watch?v=719 s5Zj9gQ

Discrete Distributions on your TI

- INPUT:
- Press STAT
- Press ENTER with 'Edit' highlighted
- Enter the X data into the L1 column
- Enter the $\mathrm{P}(\mathrm{X})$ or frequency data into the L 2 column
- Press STAT
- Press \rightarrow to CALC
- Press ENTER with '1: 1-Var Stats' highlighted
- Press $2^{\text {nd }}$
- Press 1
- Press,
- Press $2^{\text {nd }}$
- Press,
- Press Enter

Discrete Distributions on your TI

- OUTPUT:
- We don't care about all of the output here - the important ones are listed below
- $\bar{x}=$ the mean of the discrete probability distribution
- $\sigma_{x}=$ the standard deviation of this discrete probability distribution

Random Variables

Random Variable	A numerical measurement of the outcome of a random phenomena -Capital letters refer to the random variable -Lower case letters refer to specific realizations
Categorical Random Variable	Random variables that belong to a set of categories
Quantitative Random Variable	Random variables that take on numerical values

Discrete Distribution

Probability Distribution

Valid discrete probability distribution
IF:

1. Our outcomes are discrete (countable)
2. All the probabilities are valid

$$
0 \leq P(x) \leq 1 \text { for all outcomes } x
$$

3. We've accounted for all possible outcomes

$$
\sum P(x)=1
$$

Expected value of discrete X

$$
\begin{aligned}
\mu_{x}=E(X) & =\text { Expected value of } x \\
& =\sum x P(x)
\end{aligned}
$$

